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Alwstrael--The development of three-dimensional fold shapes in shear regimes is studied using theoretical and 
experimental methods and with reference to natural examples. Theoretical studies are based on homogeneous 
simple shear and other valid solutions to the equations of motion of Newtonian materials. Experimental work has 
been done with models made from analogue materials and deformed in a simple shear machine capable of large 
shear strains ('y > 10). Emphasis is placed on passive folds. Three models are presented for their development, 
two models invoking flow with steady stream lines, the third involving unsteadiness accompanying boudinage. 
Resulting sheath folds are strongly asymmetric, with curved fold hinges. Geological examples of sheath folds 
occur in many natural shear zones and may have formed in an essentially passive manner. 

I N T R O D U C T I O N  kinematic  processes of passive folding is necessary 
before a confident study of active folds is undertaken.  

IN THIS paper  we consider the development  of three-  Hudles ton (1976, 1977) has shown clearly that a 
dimensional  fold shapes in systems where the bulk necessary condition for passive folds to develop is that 
deformat ion  is a progressive simple shear. As a first the layering be oblique to the s t ream lines in the mate -  
approximat ion,  our results are therefore  applicable to rial. Such an obliquity may be present  at the onset of 
geological situations such as shear zones, the bases of deformat ion  or it may  appear  if the s t ream lines are 
nappes,  and diapir margins,  where deformat ion  is unsteady in orientation. If the s t ream lines become or 
perhaps  complex but where the major  componen t  is a remain steady (this is mot ion with steady s t ream lines, 
simple shear. Studies of such zones have shown that Truesdell  & Toupin 1960, p. 431), the obliquity 
internal folds are often strongly non-cylindrical or even diminishes progressively as the layering rotates  towards 
sheathlike in appearance  (Dalziel & Bailey 1968, Car-  the s t ream lines. Any early folds become isoclinal and no 
reras et al. 1977, Rhodes  & Gaye r  1977, Quinquis et al. new fold can develop, unless of course the s t ream lines 
1978). Fold axes are curved within the axial planes. A lose their steadiness. In Hudles ton ' s  models,  unsteadi- 
statistical analysis of fold axial directions shows a strong ness results f rom a change in boundary  conditions (an 
frequency max imum centred about  the max imum prin- increase in ice thickness). Here  we will consider 
cipal axis of the bulk strain ellipsoid. This has been  inter- unsteadiness linked to internal instability of the system. 
preted in terms of progressive rotat ion of linear ele- Three  models  are presented for the development  of 
ments  towards the extension direction (Borradaile passive folds (Fig. 1). The  first two invoke steady s t ream 
1972, Sanderson 1973, Escher  & Wat terson  1974, Bell lines, whereas the third involves unsteadiness accom- 
1978). The interpretat ion is justified for homogeneous  panying boudinage.  The models  are studied theoreti-  
deformat ion of passive folds (Donath  & Parker  1964) cally and experimentally.  Theoret ical  studies are based 
where the folded layering is rheologically no different on homogeneous  simple shear and other  valid solutions 
f rom its surroundings. For  active folds, where the lay- to the equations of mot ion of Newtonian materials. 
ering has distinct rheological propert ies,  deformat ion  
may be locally he terogeneous  and unstable. The  passive . . . . . . . . . . . . . . . . . . .  ~ - -  ~ z 
model  may then be a poor,  if useful, first approximat ion i , x .... -~ ~ ~ a 

to what really occurs. ~ ~z .~ ~ - M O D E L  1 
The deve lopment  of passive folds at the bases of ice ; . . . . . . . . . . . . .  

sheets and nappes  has been model led numerically by , . . . .  . . . . . . . .  
J 

Hudleston (1976, 1977), but in two dimensions. Active j - -  b 
folds in shear regimes have been model led exper imen-  ~ ~ MODEL 2 
tally (e.g. Ramberg  1959, Ghosh  1966, Manz & Wick- - - -  
ham 1978, R a m b e r g  & Johnson 1976, Reches  & . . . . . . . . . . . . . . . . . . . . . . . .  
Johnson 1976) and theoretically (Treagus 1973, R a m -  ~ ~ e 
berg & Johnson 1976, Reches  & Johnson 1976), but 

M O D E L  3 
only for small shear strains (up to-y = 2) and only in two . . . . .  
d i m e n s i o n s .  H e r e  w e  w i s h  to  c o n s i d e r  l a r g e  s h e a r  s t r a i n s  Fig. 1. Three models of passive fold formation in bulk simple shear. In 
(~ > 10) and three-dimensional  fold shapes. We deal Model 1, deformation is homogeneous. In Model 2, deformation is 

perturbed by a resistant layer (solid black area) with initial deflection. 
w i t h  p a s s i v e  f o l d s  b e c a u s e  (a)  t h e y  a re  e a s i e r  t o  m o d e l ,  In Model 3. deformation is perturbed by a boudinaging layer oblique 
and (b) a prel iminary appreciat ion of the essentially to the shear direction. 
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Experimental work has been done with models made from natural shear zones (Fig. 3). It is possible that many 
from analogue materials deformed in a simple shear such natural shapes have been formed almost passively 
machine capable of large shear strains, during nearly homogeneous deformation. 

The development of passive sheath folds in 
homogeneous deformation has also been followed 

PASSIVE FOLDING IN MOTION WITH STEADY experimentally using silicone models (see Appendix 1 
STREAM LINES for details of experimental procedure). In one experi- 

ment, a multilayered model was constructed with pas- 
We consider two models in which the stream lines are sive layering (Fig. 4). Initial deflections were introduced 

steady. Folds develop by passive amplification of initial during construction. After deformation in the simple 
deflections in an otherwise planar and passive layering shear machine, the initial deflections became sheath 
which is grossly parallel to the shearing plane (Fig. 1). folds (Figs. 4 and 5). Other non-cylindrical folds 
Geologically this situation might occur for example at appeared unexpectedly in the model and can be attri- 
the base of a nappe, the layering being bedding. Such a buted to (a) imperfections in model construction, (b) 
layering is rarely if ever perfectly planar: instead local boundary effects due to friction, and (c) air bubbles at 
deflections are common as a result, for example, of ini- layer surfaces. In our experience with models of this 
tial thickness variations, lateral facies changes, channel kind, the formation of sheath folds is hard to avoid. 
infills and so on. Moreover, natural deflections of this 
kind are generally non-cylindrical. Many are also Model 2 
symmetrical about the bedding normal. 

We consider a bulk simple shearing, perturbed by the 
Model 1 presence of resistant layers grossly parallel to the 

shearing plane but with surface asperities (Fig. lb). This 
We assume homogeneous simple shear with the model generalizes the preceding one to systems with 

shearing plane parallel to the sheet dip of the layering rheological layering. Again a geological application of 
(Fig. 2). As a result of deformation, any initiaUy the model is the base of a nappe. 
symmetrical deflections become strongly asymmetric, If the resistant layers are completely rigid, the motion 
with one limb longer than the other. The sense of asym- elsewhere will have steady stream lines. This has been 
metry (clockwise in Fig. 2) is a result of the dextral sense modelled theoretically for the special case of a single 
of shear. The hinge line itself becomes more strongly rigid layer sandwiched between two infinite half-spaces 
curved and the fold therefore more non-cylindrical. The of Newtonian material with uniform viscosity. Using 
final fold shape depends upon the shape of the initial methods of conformal representation (Appendix 2), an 
deflection and on the total shear strain; it is independent exact two-dimensional solution has been obtained for 
by definition of the deformation history. At high shear the velocities about a rigid layer with periodically spaced 
strains ('y > 10), most deflections of realistic geological asperities of finite amplitude (Fig. 6). Next to the layer, 
proportions become sheathlike. Notice that in simple the stream lines are parallel to the interface but the amp- 
shear the amplitude (measured along z) and the hinge litude of this disturbance decays with distance from the 
span (measured along y) remain constant by definition, layer (cf. Hudleston 1976, fig. 9). Any line in the matrix 
As a result a cross-section normal to x reveals a closed not parallel to a stream line will deform; some will 
elliptical trace, with short axis parallel to z. Shapes of develop folds. For example, consider a line (L-L',  Fig. 
this kind occur and have been described (eyes) in rocks 6) which is the locus of points at a constant orthogonal 

$--0 g = 5  g = 1 5  

Fig. 2. Model  I: theoretical results. Noncylindrical initial deflections of various shapes  (a, b & c) have been deformed in 
simple shear  (top: x = shear  direction, xy = shear ing plane). Folds become asymmetr ic  at modera te  shear  strains (~/= 5) and 

strongly noncylindrical at high shear  strains ('y = 15). 



(a) 

(b) 

Fig. 3. Natural examples of sheath folds. (a) Nose region of sheath exposed in vertical E-W sea-cliff at Vallon du Lavoir, 
Quehello, Ile de Oroix, France (47°30'N, 5°50 ' W). Arrows indicate declination of fold hinge (110 ° at A, 060 ° at B, 200 ° a~ 
C). (b) Section normal to long axes of sheaths in mylonitic rocks from Vang, Valdres, Norway (specimen courtesy of A. G. 

Milnes). Notice elliptical eyelike traces. 
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Fig. 5. Photograph of serial section 1 I, Model 1 (for location, see Fig. 4). Model is built of passive silicone layers of 
alterna~ag ¢oloor. Central layer (black) is that of Fig. 4. Eyelike traces are cross-sections of sheaths. 

Fig. 9. Photograph of serial section No. 9, Model 3 (for location, see block diagram of Fig. 8). 

Fig. 10. Simple shear machine. The central space (MS) will house a model. Shear stress is applied to the upper and lower 
surfaces of the model through stiff plates (P) which slide along rails (R) under the action of a chain and sprockets driven by a 
motor (M). Lateral confinement is provided by stationary Perspex walls (transparent). The ands of the model are supported 
by a stack of sliding plates (SP), each one positioned by an accordion-like distance iinearizer (DL). The model space as 

illustrated has a dextral shear strain of ~, = 1.5. The rectangular white scale bar is 50 can long. 

/~ ~i  ~ : ¸  

0 I 2 ,..3 scm 

Fig. 11. Homogeneity of deformation (T ffi 16). This section through a silicone model is normal to the shear direction. The 
layers are of contrasting colour but the same theology. Before deformation each layer was approximately planar, of even 
thickness and normal to the shear direction. Folds and thickness variations now visible result mainly from adherence of the 
model boundaries (left and right) to the stationary confining walls of the simple shear machine. Notice that boundary 

disturbances diminish rapidly towards the centre of the model. 

1 2 2  
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Fig. 4. Model 1: experimental  result (- /--  10). Serial sections (numbered 9-20) through a layered silicone model  are shown 
in isometJ:ic projection (block diagram). They are normal to the shear direction (x). Arrows show sense of shear. Only the 
central layer of the model is shown. Hinge-lines of antiforms (a) and syrffonms (b) have been interpolated. A longitudinal 

section (AB, right) shows strong asymmetry of folds. Other  layers are illustrated in Fig. 5. 

distance from the rigid boundary.  Using the exact solu- resistant layers (Fig. lc).  The  layering is oblique to the 
tion for the velocities (Appendix 2), the new position of bulk shear direction and the angle between them 
each point has been calculated for a time interval diminishes progressively. This is the situation envisaged 
equivalent to a bulk shear strain of ~/ = 10. The new by Hudleston (1976) for steady stream lines, but here it 
locus (M-M' )  has a strongly asymmetric, nearly isoclinal is generalised to include relatively resistant layers which 
fold. The  result is similar to that obtained by I--Iudleston boudinage and cause unsteadiness. Geologically this 
(1976) using a numerical model  based on non- situation is to be expected in sbear zones of all kinds. The 
Newtonian behaviour,  model is especially applicable to layered metamorphic  

A similar but three-dimensional  model has been rocks. 
investigated experimentally using a matrix of silicone We have investigated this model experimentally. A 
putty and a single resistant embedded  layer of plasticine, single resistant layer (75% by weight plasticine, 25% 
Before  assembly with the matrix, the surface of the plas- silicone putty) was embedded in a matrix of silicone 
ticine layer was indented so as to create an initial putty with colour banding. The layering was made as 
non-cylindrical deflection. The matrix was then added in planar as possible with no deliberate initial deflections. 
layers of contrasting colours but of constant thickness It was placed in the simple shear machine at an initial 
and rheology. The model  was deformed in the simple angle of 10 ° to the shear direction and deformed to a 
shear machine and serially sectioned. The resulting shear strain of "y = 12.5. During the experiment,  the 
reconstruction (Fig. 7) reveals a passive non-cylindrical resistant layer was observed to boudinage progressively. 
fold whose profile (along the plane of mirror symmetry Early necking and rupture occurred at selected sites. 
normal to y) is very similar to that obtained in the two- The boudins so formed then separated, matrix material 
dimensional theoretical model (Fig. 6). filling the intervening gaps. Further  ductile extension 

within the boudin segments led to renewed necking and 
rupture,  with a consequent increase in the total number  

PASSIVE F O L D I N G  IN M O T I O N  W I T H  of boudins. A reconstruction of the deformed model 
U N S T E A D Y  S T R E A M  LINES (Fig. 8) shows that boudin axes are not all normal to the 

shear direction. The  boudins themselves are non-cylin- 
Model 3 drical and some axes intersect cross sections drawn 

normal to y. This could give the false impression that 
Here  we suppose that during bulk simple shearing an bulk extension occurred along y. The origin of the 

unsteadiness of stream lines is caused by the onset and oblique axes is attributable to: (a) rotation of line ele- 
progressive development  of boudinage in relatively ments towards the extension direction, (b) formation of 
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Fig. 6. Model 2: theoretical solution (-y = 10). A rigid layer (stippled), with periodically spaced asperities of finite amplitude, 
is overlain by a Newtonian matrix with a passive layer at the base (dark). In the undeformed state (a), the passive layer is of 
constant thickness. Under  the action of a dextral shear stress (arrows), the matrix flows. The flow velocity, at each point is 
derived in Appendix  2. Curved orthogonal gridlines in the matrix are curvilinear coordinates. Those trending from left to 
right (~-lines) are also stream lines and particle path-lines. After  deformation (b), the passive layer is strongly folded. 
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Fig. 7. Mode l  2: exper imenta l  result (~ = 14). Serial sections (6 -11 )  through a layered model are shown in isometr ic 
pro jec t ion (a). The shear d i rect ion and shear sense are shown by arrows. A single resistant layer (darker  shade) is o f  
plasticine. The other  layer shown ( l ighter  shade) is o f  sil icone, The rest o f  the model  is also of  silicone. Hinge lines o f  an 
ant i fo rm (a) and synform (s) have been interpolated.  Both  folds are der ived f rom an ini t ial  def lect ion. The i r  asymmetry is 

apparent in the longitudinal section (b). 
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Fig. 8. Model 3: experimental result (-¢ = 12.5). Serial sections (1-1 1) through a layered model are shown in isometric 
projection. Arrows show the shear direction and shear sense. Steplike boundaries of the model were caused by the boundary 
plates of the simple shear machine (see Appendix 1). Widely separated boudins of a plasticine/silicone mixture (black 
elliptical shapes) are surrounded by passive layers of silicone (wavy black lines and folds). All are set in a silicone matrix (not 

illustrated here - - see  Fig. 9). 
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axes  in an ob l i que  pos i t i on  by  s h e a r  fa i lure  of  the  res is-  en t i re  h i s tory  of  p rogres s ive  shear ing ,  as a resul t  of 
tan t  layer ,  o r  (c) a c o m b i n a t i o n  of  bo th .  ep i sod ic  ins tab i l i ty  of  the  flow. Success ive  r e fo ld ing  of 

N o n - c y l i n d r i c a l  pass ive  folds  a re  vis ible  in the  co lou r -  m e t a m o r p h i c  fabr ics  is also l ikely  (see  Qu inqu i s  et al. 

b a n d e d  ma t r i x  (Fig.  9). T h e s e  a re  d e v e l o p e d  ma in ly  in 1978) .  
the  r eg ions  b e t w e e n  s e p a r a t e d  b o u d i n s  and  we i n t e rp re t  
t h e m  as fol lows.  In f low of  ma t r i x  in to  b o u d i n  necks  p r o -  
duces  de f l ec t ions  in the  pass ive  layer ing .  S t r e a m  l ines in R E F E R E N C E S  
the  ma t r i x  a re  no t  pa ra l l e l  to  the  layer ing ,  which  t he r e -  
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6. T h r e e - d i m e n s i o n a l  shapes  of  act ive folds  in shea r  A P P E N D I X  1 

r eg imes  have  not  ye t  b e e n  inves t iga ted .  By a n a l o g y  with  
resul ts  for  coax ia l  r eg imes  (e.g. D u b e y  & C o b b o l d  1977)  E X P E R I M E N T A L . P R O C E D U R E  

act ive  folds  in s h e a r  r eg imes  a re  l ike ly  to  be  m o r e  cyl in-  Model materials 
dr ica l  than  the i r  pass ive  coun t e rpa r t s .  

7. F o l d s  m a y  be  g e n e r a t e d  ep i sod ica l ly  t h r o u g h o u t  an Only two materials were used, silicone putt 3 (Rhodorsil R Gomme 
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Speciale GS1R,  manufac tu red  by Rhone-Poulenc ,  France) and  plus- APPENDIX 2 
ticine (Standard Violet Plasticine, manufac tured  by Harbu t t ' s  Ltd., 
England) .  According to the manufac turers '  data,  the silicone put ty has  
an almost  perfectly linear dependence  of stress upon  strain-rate,  for STEADY-STATE S H E A R I N G  I N  A NEWTONIAN 
t e m p e r a t u r e s r a n g l n g f r o m - 4 0 ° C t o +  1 0 0 ° C a n d s h e a r s t r e s s e s l e s s  H A L F - S P A C E  B O U N D E D  B Y  A R I G I D  B E D  
than 100 bars (10 MPa).  The  viscosity ranges  f rom 107 poise (106 Pa s) VI / I ' I 'H  PERIODIC ASPERITIES OF FINITE 
at - 40°C through 1.6 x 105 poise at + 20°C to 103 poise at + 100°C. 
As  manufac tu red  the  silicone is pale rose in colour. Batches  of various AMPLITUDE 
darker  tones  were prepared  by admixing small  amoun t s  of finely pow- 
dered iron oxide (Fe20~). This  mineral  p igment  and the silicone are We consider the slow two-dimensional  deformat ion  of a Newtonian 
chemically inert  and the  mixture  is stable. SmaU differences in viscosity fluid, where the velocity vector at each point  has  componen ts  v~ and vn 
were detected be tween  the mixture and  the  pure  silicone, but  the vis- along orthogonal  curvilinear coordinates,  ~, ~q (see Borg 1963, chapter  
cosity ratio was es t imated as less than  1.5:1 and no a t tempt  was made  3, for a discussion of curvilinear coordinates).  If there  are no volume 
to measu re  it exactly. Plasticine in contrast  has  a strongly non- l inear  changes,  the velocities can be expressed as 
dependence  of stress upon strain rate (McClay 1976). It somet imes  - h . ~ - ;  v~ = + h ~  (1) 
exhibits s train-softening,  leading to shear -band  format ion and  failure, r~ = a'q ~ 
These  propert ies  render  it suitable for making  relatively resistant 
layers that  are to boudinage,  where U (~, "q) is a s t ream funct ion (Jaeger 1969, p. 14.0) and h is a 

magnificat ion factor for the curvilinear coordinates (Borg 1963). For a 
Newtonian  fluid, it can be shown (Jaeger 1969, p. 140) that  Usatisf ies 

Model construction the b iharmonic  equation,  

V 2 ( W  U) = 0 .  (2) 

Models  were constructed in layers within a special mould  with In Cartesian coordinates,  general  solutions to (2) can be written in 
overall d imensions  of 40 x 10 x 5 cm. Individual layers (2-5  m m  
thick) were prepared  by pressure  moulding  (s i l icone)or  rolling (plus- te rms  of the complex a rgument  z = x + iy (Jaeger & Cook 1971, 

ticine). The  physical propert ies  of  the silicone are such that  immedia te  p. 231): 
bonding  is ensured  when  l ayersa re  assembled,  initial deflections were U = ½ tz ~ (z) + z ~ (z) + q~ (z) + ~ (z)l (3) 

introduced midway through the assembly process,  by indent ing the where ~ and ~ are analytic funct ions of z a n d t h e b a r d e n o t e s a c o m p l e x  
layer surface with a rigid object  of  known shape.  Once  assembled,  the conjugate .  Techniques  of conformal  representa t ion  may  be used to 
models  were cooled to - 3 0 " C  in a commercia l  freezer to facilitate obtain solutions in te rms  of non-Car tes ian  coordinates  (Mushkelishvili  
handling and insert ion in the deformat ion  apparatus .  1953). We consider  the t ransformat ion 

z =  [ + A e x p w E  (4) 

Model deformation where  ~ = ~ + i~q is a complex argument ,  A is a constant  ampli tude and 
w is a constant  wavenumber .  Equat ion  (4) t ransforms the straight lines 

Models  were deformed in a simple shear  machine  (Fig. 8) designed ~ = constant  and -q = constant  into or thogonal  curvilinear coordinates  
for at taining large shear  strains (-~ < 30). The  sliding plates (Fig. 8 ) a r e  (Fig. 6). The  magnificat ion factor is given by (Borg 1963) 
of  finite thickness  (5 ram) and  hence at high shear  strains they cause 1 O ~ _ ~ : ÷ ~ . = l + 2 A w e x p w ~ c o s w ~ q + A 2 w Z e x p 2 w ~ "  
some boundary  perturbat ions.  Friction against  the  lateral perspex --~ = 
walls was minimized using a liquid soap as lubricant. To assess the (5) 
boundary  condit ions on the models,  a test was conducted  on a If we choose the functions ~ and ~ as follows: 
rheologlcally h o m o g e n e o u s  silicone model  with passive coiour 
banding. Ideally such a model  should undergo  in the  machine  a • = -~  (~ - A exp w/~) ; ~ = K ~ 4 (~z + 2 A:  w~) (6)  

h o m o g e n e o u s  simple shear.  In fact, friction at the  lateral walls causes  where  K is~'a constant  giving the intensity of the flow, then  from (3); 
some depar ture  f rom this behaviour.  However ,  the external  d imen-  
sions of the model  are such that  even with perfect  adherence  at the U = K (i ~ - ~ A 2 exp 2w~ + ½ A 2 w~) (7) 
lateral walls, the  result ing boundary  disturbance decays rapidly with and  from (1) the velocities are 
distance f rom the walls and  is negligible at a distance of I cm (Fig. 9). It 
doe sno t  follow of course that  boundary  dis turbances will de~,ay rapidiy v~ = 0; v,~ = Kh {~ + ½ A: w (1 - exp 2w~)}. (8) 
if deformat ion  is internally unstable.  Liquid soap, however,  greatly The  compofient  vn vanishes at the boundary  ~ = 0 (indicating perfect 
reduces the effects of friction, adhesion)  and becomes K(~ + ½A2w) at a large distance from it. Thus  

the solution represents  shear  flow over a bed with periodically spaced 
asperities of finite amplitude.  A. Because v¢ -- 0, the "q-coordinate 

Dissection of models lines are s t ream lines. For steady motion,  they are also particle path-  
lines and the travel t ime, t, of a particle leaving the line xl = 0 is: 

Af te r  deformat ion  of the  model,  the entire shear  machine  was ( 'q d'q EK / }~ ("q d'q 
cooled to - 30°C before the model  was extracted. It could then be ~ = {~ + ½ A2w (1 - exp 2w~) • I 0 ~ (9) 
bandied and  even cut without  causing significant internal  deformat ion.  ~ 0 v 
Serial sections were cut and photographed  while cold. The  three Us ing  the value of h given in (5), we may integrate to obtain 
dimensional  geometry  of internal s tructures was reconstructed from 
the photographs  using an isometric projection. The  technique of total t = 2 K  (1 + Aw exp w~) E (k, tx) (10) 
dissection has  of  course one major  disadvantage:  the  model  cannot  be w {~ + ½ A z w (1 - exp 2 w~)} " 
reassembled and used to study fur ther  stages of  deformation.  Instead where E(k,0t) is a s tandard elliptic integral of the second kind, with 
the exper iment  mus t  be repeated with a new model ,  a rguments  

2 (Aw exp w~) 1/-~ 
k = ;ct = ~ .  (11) 

1 + Aw exp w~ 2 

Using (10) one can compute  the new positions of particles after a finite 
t ime interval. The  fold of Fig. 6(b) has been produced in this way. 


